Package Overview
Vars is a powerful Python toolkit for financial risk analysis, providing comprehensive tools for Value at Risk (VaR) calculation, Expected Shortfall (ES) estimation, volatility modeling, and risk visualization.
What is Value at Risk (VaR)?
Value at Risk (VaR) is a statistical measure that quantifies the level of financial risk within a firm or investment portfolio over a specific time frame. It estimates the maximum potential loss with a given confidence level (e.g., 95% or 99%).
Static VaR
Calculate VaR using historical simulation, normal distribution, and Student's t-distribution methods.
Dynamic VaR
Time-varying VaR using MA, EWMA, and ARCH/GARCH models for volatility forecasting.
Expected Shortfall
Calculate Conditional VaR (CVaR) measuring the average loss in worst-case scenarios beyond VaR.
Visualization
Create informative plots for VaR monitoring, distribution fitting, and risk reporting.
Core Features
Explore the comprehensive capabilities of the Vars package for financial risk analysis.
Static Value at Risk
Calculate VaR using three different methods: historical simulation, normal distribution, and Student's t-distribution. Compare results across multiple confidence levels.
import Vars
import numpy as np
# Generate sample returns
returns = np.random.randn(1000) * 0.02
# Calculate VaR using all methods
var_all = Vars.calculate_static_var(returns, alphas=[0.01, 0.05], method='all')
# Calculate specific method
var_norm = Vars.calculate_static_var(returns, alphas=0.05, method='norm')
# Compare methods visually
fig = Vars.compare_static_var_methods(returns, alphas=[0.01, 0.05])
Dynamic Value at Risk
Calculate time-varying VaR using Moving Average (MA), Exponentially Weighted Moving Average (EWMA), and ARCH/GARCH models. Perfect for monitoring risk in financial time series.
import Vars
import pandas as pd
import numpy as np
# Create time series data
dates = pd.date_range('2020-01-01', periods=1000, freq='D')
returns = pd.Series(np.random.randn(1000) * 0.01, index=dates)
# Calculate MA VaR
var_ma = Vars.calculate_dynamic_var(returns, method='MA', window=60)
# Calculate EWMA VaR
var_ewma = Vars.calculate_dynamic_var(returns, method='EWMA', lambda_param=0.96)
# Calculate ARCH VaR
split_date = pd.Timestamp('2020-09-01')
var_arch = Vars.calculate_dynamic_var(returns, method='ARCH', split_index=split_date)
Expected Shortfall (ES)
Calculate Expected Shortfall (Conditional VaR), which measures the average loss in the worst (1-alpha)% of cases, providing a more comprehensive risk measure than VaR.
import Vars
import numpy as np
# Generate sample data with fat tails
returns = np.random.standard_t(df=5, size=1000) * 0.02
# Calculate ES using all methods
es_all = Vars.calculate_expected_shortfall(returns, confidence_levels=[0.01, 0.05])
# Calculate specific method
es_t = Vars.calculate_expected_shortfall(returns, confidence_levels=0.05, method='t')
# Historical simulation ES
es_hist = Vars.calculate_expected_shortfall(returns, confidence_levels=[0.01, 0.05, 0.1],
method='historical')
Visualization Tools
Create informative visualizations for risk analysis including VaR scatter plots, distribution fitting, and comprehensive risk reports.
import Vars
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Create sample data
dates = pd.date_range('2020-01-01', periods=100, freq='D')
returns = pd.Series(np.random.randn(100) * 0.02, index=dates)
var_df = Vars.calculate_dynamic_var(returns, method='MA', alphas=[0.01, 0.05])
# VaR scatter plot
fig, ax = Vars.plot_var_scatter(returns, var_df, title='VaR Monitoring')
# Distribution fitting plot
fig = Vars.plot_distribution_fit(returns.values, bins=30)
# Comprehensive risk report
risk = Vars.RiskMetrics(returns)
risk.calculate_all(alpha=0.05)
risk_report = risk.plot_report()
plt.show()
Advanced Tools
Advanced features including volatility modeling, unified risk metrics interface, and comprehensive risk reporting.
import Vars
import pandas as pd
# Calculate volatility
vol_ma = Vars.calculate_volatility(returns, method='MA', window=60)
vol_ewma = Vars.calculate_volatility(returns, method='EWMA')
vol_arch = Vars.calculate_volatility(returns, method='ARCH', split_index='2020-09-01')
# Use RiskMetrics class for comprehensive analysis
risk = Vars.RiskMetrics(returns)
# Calculate all risk metrics
results = risk.calculate_all(alpha=0.05, dynamic_var_method='EWMA')
# Generate comprehensive report
report_fig = risk.plot_report(figsize=(15, 25))
# Quick VaR calculation
quick_results = Vars.quick_var(returns, alphas=0.05)
Installation
Required dependencies for the Vars package.
Dependencies
Vars package requires the following dependencies. Install them via pip before using the package.
| Package | Version | Purpose |
|---|---|---|
| numpy | ≥1.19.0 | Numerical computations |
| pandas | ≥1.3.0 | Time series handling |
| matplotlib | ≥3.4.0 | Visualization |
| scipy | ≥1.7.0 | Statistical distributions |
| arch | ≥5.0.0 | ARCH/GARCH models |
Quick Start
Get started with Vars in just a few lines of code.
Basic Usage Example
import Vars
import numpy as np
import pandas as pd
# 1. Generate sample data
returns = np.random.randn(1000) * 0.02
# 2. Calculate static VaR
var_results = Vars.calculate_static_var(returns, alphas=[0.01, 0.05], method='all')
print("Static VaR Results:", var_results)
# 3. Calculate Expected Shortfall
es_results = Vars.calculate_expected_shortfall(returns, confidence_levels=[0.01, 0.05])
print("Expected Shortfall Results:", es_results)
# 4. Create time series data for dynamic VaR
dates = pd.date_range('2020-01-01', periods=1000, freq='D')
returns_series = pd.Series(np.random.randn(1000) * 0.01, index=dates)
# 5. Calculate dynamic VaR
dynamic_var = Vars.calculate_dynamic_var(returns_series, method='MA', window=60)
# 6. Visualize results
fig, ax = Vars.plot_var_scatter(returns_series, dynamic_var)
import matplotlib.pyplot as plt
plt.show()
Run Demo
import Vars
# Run comprehensive demo
Vars.demo()
API Reference
Main functions and classes available in the Vars package.
| Function/Class | Description | Parameters |
|---|---|---|
calculate_static_var() |
Calculate static Value at Risk | returns, alphas, method, verbose, return_fitted_params |
calculate_dynamic_var() |
Calculate dynamic/time-varying VaR | returns, method, alphas, align, **kwargs |
calculate_expected_shortfall() |
Calculate Expected Shortfall (ES) | returns, confidence_levels, method, num_simulations, verbose |
calculate_volatility() |
Calculate volatility using various models | returns, method, **kwargs |
plot_var_scatter() |
Create VaR scatter plot for monitoring | returns, value_at_risk, title, figsize, show_statistics, ax |
plot_distribution_fit() |
Plot distribution fitting analysis | data, bins, figsize, show_statistics, style_name |
compare_static_var_methods() |
Compare different VaR methods visually | returns, alphas, figsize, ax |
RiskMetrics class |
Unified interface for risk analysis | returns (in constructor) |
demo() |
Run comprehensive package demo | None |
quick_var() |
Quick calculation of multiple VaR methods | returns, alphas |
Examples
Practical examples showing real-world usage of the Vars package.
Comprehensive Risk Report
import Vars
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Create realistic financial time series
np.random.seed(42)
n_periods = 1000
dates = pd.date_range('2019-01-01', periods=n_periods, freq='D')
# Simulate returns with volatility clustering (GARCH-like)
volatility = 0.01 * np.ones(n_periods)
returns = np.zeros(n_periods)
for t in range(1, n_periods):
# Simple GARCH(1,1) volatility
volatility[t] = 0.05 + 0.85 * volatility[t-1] + 0.1 * returns[t-1]**2
returns[t] = np.random.randn() * np.sqrt(volatility[t])
returns_series = pd.Series(returns, index=dates)
# Create RiskMetrics instance
risk = Vars.RiskMetrics(returns_series)
# Calculate all risk metrics
results = risk.calculate_all(alpha=0.05, dynamic_var_method='ARCH',
split_index=pd.Timestamp('2021-06-01'))
# Generate comprehensive report
report_fig = risk.plot_report(figsize=(15, 20))
# Save report
report_fig.savefig('risk_report.png', dpi=150, bbox_inches='tight')
plt.close()
print("Risk analysis completed. Report saved as 'risk_report.png'")
Backtesting VaR Models
import Vars
import pandas as pd
import numpy as np
# Generate historical data
dates = pd.date_range('2018-01-01', periods=1500, freq='D')
returns = pd.Series(np.random.randn(1500) * 0.015, index=dates)
# Split into training and testing
train = returns[:1000]
test = returns[1000:]
# Calculate VaR on training data
var_ma = Vars.calculate_dynamic_var(train, method='MA', window=100)
var_ewma = Vars.calculate_dynamic_var(train, method='EWMA', lambda_param=0.94)
# Extend VaR forecasts to test period (simplified approach)
# In practice, you would re-estimate models recursively
# Compare exceedence rates
def calculate_exceedence(returns, var_series, alpha=0.05):
# Simple exceedence calculation
exceedences = returns <= var_series
exceedence_rate = exceedences.mean()
expected_rate = alpha
return exceedence_rate, expected_rate
# Print results
print("VaR Backtesting Results:")
print("-" * 40)
print(f"MA VaR exceedence rate: {calculate_exceedence(train, var_ma['5%'])[0]:.2%}")
print(f"EWMA VaR exceedence rate: {calculate_exceedence(train, var_ewma['5%'])[0]:.2%}")
print(f"Expected exceedence rate: 5.00%")
Function Definitions
Detailed function signatures and class definitions for the Vars package.
Core Functions
def calculate_static_var(
returns: np.ndarray,
alphas: Union[List[float], float] = [0.01, 0.05],
method: str = "all",
verbose: bool = False,
return_fitted_params: bool = False,
) -> Union[Dict[str, np.ndarray], np.ndarray, Tuple[np.ndarray, Dict]]:
"""Calculate static Value at Risk (VaR) using different methods."""
def calculate_dynamic_var(
returns: pd.Series,
method: str = "EWMA",
alphas: Union[List[float], float] = [0.01, 0.05],
align: str = "target",
**kwargs,
) -> pd.DataFrame:
"""Calculate dynamic Value at Risk using MA, EWMA, or ARCH models."""
def calculate_expected_shortfall(
returns: np.ndarray,
confidence_levels: Union[List[float], float] = [0.01, 0.05],
method: str = "all",
num_simulations: int = 1000000,
verbose: bool = False,
) -> Union[Dict[str, np.ndarray], np.ndarray, str]:
"""Calculate Expected Shortfall (Conditional Value at Risk)."""
def calculate_volatility(
returns: pd.Series,
method: str = "MA",
**kwargs
) -> Union[pd.Series, pd.DataFrame]:
"""Calculate volatility using MA, EWMA, or ARCH models."""
def plot_var_scatter(
returns: Union[pd.Series, np.ndarray],
value_at_risk: Union[pd.DataFrame, pd.Series, np.ndarray, float],
title: Optional[str] = None,
figsize: Tuple[int, int] = (12, 6),
show_statistics: bool = True,
ax=None,
) -> Tuple[Any, Any]:
"""Plot VaR scatter plot for monitoring VaR exceedences."""
def plot_distribution_fit(
data: np.ndarray,
bins: Optional[int] = None,
figsize: Tuple[int, int] = (10, 6),
show_statistics: bool = True,
style_name: str = "seaborn-v0_8-whitegrid",
) -> Any:
"""Plot data distribution histogram with fitted distributions."""
def compare_static_var_methods(
returns: np.ndarray,
alphas: List[float] | float = [0.01, 0.05],
figsize: Tuple[int, int] = (14, 5),
ax=None,
) -> Any:
"""Compare different static VaR calculation methods."""
class RiskMetrics:
"""Unified interface for risk metrics calculation and reporting."""
def __init__(self, returns: Union[np.ndarray, pd.Series]):
"""Initialize RiskMetrics with returns data."""
def calculate_static_var(self, alphas: float = 0.05, method: str = "all"):
"""Calculate static Value at Risk."""
def calculate_es(self, alphas: float = 0.05, method: str = "all"):
"""Calculate Expected Shortfall."""
def calculate_dynamic_var(
self,
method: str = "EWMA",
alphas: float = 0.05,
align: str = "target",
fullrange=True,
**kwargs,
):
"""Calculate dynamic Value at Risk."""
def calculate_all(
self, alphas: float = 0.05, dynamic_var_method: str = "EWMA", **kwargs
):
"""Calculate all risk metrics with default settings."""
def plot_report(self, figsize: Tuple[int, int] = (15, 25), **kwargs):
"""Generate comprehensive risk report visualization."""
def demo() -> None:
"""Run comprehensive demonstration of Vars package functionality."""
def quick_var(
returns: np.ndarray,
alphas: float = 0.05
) -> Dict[str, float]:
"""Quick calculation of multiple VaR methods (simplified interface)."""