Vars Package - Value at Risk & Risk Metrics Toolkit

Value at Risk & Risk Metrics Calculation Toolkit

A comprehensive Python package for calculating and visualizing Value at Risk (VaR), Expected Shortfall (ES), volatility estimation, and risk analysis. Includes static VaR, dynamic VaR, ES calculation, and visualization utilities.

Package Overview

Vars is a powerful Python toolkit for financial risk analysis, providing comprehensive tools for Value at Risk (VaR) calculation, Expected Shortfall (ES) estimation, volatility modeling, and risk visualization.

What is Value at Risk (VaR)?

Value at Risk (VaR) is a statistical measure that quantifies the level of financial risk within a firm or investment portfolio over a specific time frame. It estimates the maximum potential loss with a given confidence level (e.g., 95% or 99%).

Static VaR

Calculate VaR using historical simulation, normal distribution, and Student's t-distribution methods.

Dynamic VaR

Time-varying VaR using MA, EWMA, and ARCH/GARCH models for volatility forecasting.

Expected Shortfall

Calculate Conditional VaR (CVaR) measuring the average loss in worst-case scenarios beyond VaR.

Visualization

Create informative plots for VaR monitoring, distribution fitting, and risk reporting.

Core Features

Explore the comprehensive capabilities of the Vars package for financial risk analysis.

Static Value at Risk

Calculate VaR using three different methods: historical simulation, normal distribution, and Student's t-distribution. Compare results across multiple confidence levels.

Python Example
import Vars
import numpy as np

# Generate sample returns
returns = np.random.randn(1000) * 0.02

# Calculate VaR using all methods
var_all = Vars.calculate_static_var(returns, alphas=[0.01, 0.05], method='all')

# Calculate specific method
var_norm = Vars.calculate_static_var(returns, alphas=0.05, method='norm')

# Compare methods visually
fig = Vars.compare_static_var_methods(returns, alphas=[0.01, 0.05])

Dynamic Value at Risk

Calculate time-varying VaR using Moving Average (MA), Exponentially Weighted Moving Average (EWMA), and ARCH/GARCH models. Perfect for monitoring risk in financial time series.

Python Example
import Vars
import pandas as pd
import numpy as np

# Create time series data
dates = pd.date_range('2020-01-01', periods=1000, freq='D')
returns = pd.Series(np.random.randn(1000) * 0.01, index=dates)

# Calculate MA VaR
var_ma = Vars.calculate_dynamic_var(returns, method='MA', window=60)

# Calculate EWMA VaR
var_ewma = Vars.calculate_dynamic_var(returns, method='EWMA', lambda_param=0.96)

# Calculate ARCH VaR
split_date = pd.Timestamp('2020-09-01')
var_arch = Vars.calculate_dynamic_var(returns, method='ARCH', split_index=split_date)

Expected Shortfall (ES)

Calculate Expected Shortfall (Conditional VaR), which measures the average loss in the worst (1-alpha)% of cases, providing a more comprehensive risk measure than VaR.

Python Example
import Vars
import numpy as np

# Generate sample data with fat tails
returns = np.random.standard_t(df=5, size=1000) * 0.02

# Calculate ES using all methods
es_all = Vars.calculate_expected_shortfall(returns, confidence_levels=[0.01, 0.05])

# Calculate specific method
es_t = Vars.calculate_expected_shortfall(returns, confidence_levels=0.05, method='t')

# Historical simulation ES
es_hist = Vars.calculate_expected_shortfall(returns, confidence_levels=[0.01, 0.05, 0.1],
                                           method='historical')

Visualization Tools

Create informative visualizations for risk analysis including VaR scatter plots, distribution fitting, and comprehensive risk reports.

Python Example
import Vars
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Create sample data
dates = pd.date_range('2020-01-01', periods=100, freq='D')
returns = pd.Series(np.random.randn(100) * 0.02, index=dates)
var_df = Vars.calculate_dynamic_var(returns, method='MA', alphas=[0.01, 0.05])

# VaR scatter plot
fig, ax = Vars.plot_var_scatter(returns, var_df, title='VaR Monitoring')

# Distribution fitting plot
fig = Vars.plot_distribution_fit(returns.values, bins=30)

# Comprehensive risk report
risk = Vars.RiskMetrics(returns)
risk.calculate_all(alpha=0.05)
risk_report = risk.plot_report()

plt.show()

Advanced Tools

Advanced features including volatility modeling, unified risk metrics interface, and comprehensive risk reporting.

Python Example
import Vars
import pandas as pd

# Calculate volatility
vol_ma = Vars.calculate_volatility(returns, method='MA', window=60)
vol_ewma = Vars.calculate_volatility(returns, method='EWMA')
vol_arch = Vars.calculate_volatility(returns, method='ARCH', split_index='2020-09-01')

# Use RiskMetrics class for comprehensive analysis
risk = Vars.RiskMetrics(returns)

# Calculate all risk metrics
results = risk.calculate_all(alpha=0.05, dynamic_var_method='EWMA')

# Generate comprehensive report
report_fig = risk.plot_report(figsize=(15, 25))

# Quick VaR calculation
quick_results = Vars.quick_var(returns, alphas=0.05)

Installation

Required dependencies for the Vars package.

Dependencies

Vars package requires the following dependencies. Install them via pip before using the package.

Package Version Purpose
numpy ≥1.19.0 Numerical computations
pandas ≥1.3.0 Time series handling
matplotlib ≥3.4.0 Visualization
scipy ≥1.7.0 Statistical distributions
arch ≥5.0.0 ARCH/GARCH models

Quick Start

Get started with Vars in just a few lines of code.

Basic Usage Example

Python
import Vars
import numpy as np
import pandas as pd

# 1. Generate sample data
returns = np.random.randn(1000) * 0.02

# 2. Calculate static VaR
var_results = Vars.calculate_static_var(returns, alphas=[0.01, 0.05], method='all')
print("Static VaR Results:", var_results)

# 3. Calculate Expected Shortfall
es_results = Vars.calculate_expected_shortfall(returns, confidence_levels=[0.01, 0.05])
print("Expected Shortfall Results:", es_results)

# 4. Create time series data for dynamic VaR
dates = pd.date_range('2020-01-01', periods=1000, freq='D')
returns_series = pd.Series(np.random.randn(1000) * 0.01, index=dates)

# 5. Calculate dynamic VaR
dynamic_var = Vars.calculate_dynamic_var(returns_series, method='MA', window=60)

# 6. Visualize results
fig, ax = Vars.plot_var_scatter(returns_series, dynamic_var)
import matplotlib.pyplot as plt
plt.show()

Run Demo

Python
import Vars

# Run comprehensive demo
Vars.demo()

API Reference

Main functions and classes available in the Vars package.

Function/Class Description Parameters
calculate_static_var() Calculate static Value at Risk returns, alphas, method, verbose, return_fitted_params
calculate_dynamic_var() Calculate dynamic/time-varying VaR returns, method, alphas, align, **kwargs
calculate_expected_shortfall() Calculate Expected Shortfall (ES) returns, confidence_levels, method, num_simulations, verbose
calculate_volatility() Calculate volatility using various models returns, method, **kwargs
plot_var_scatter() Create VaR scatter plot for monitoring returns, value_at_risk, title, figsize, show_statistics, ax
plot_distribution_fit() Plot distribution fitting analysis data, bins, figsize, show_statistics, style_name
compare_static_var_methods() Compare different VaR methods visually returns, alphas, figsize, ax
RiskMetrics class Unified interface for risk analysis returns (in constructor)
demo() Run comprehensive package demo None
quick_var() Quick calculation of multiple VaR methods returns, alphas

Examples

Practical examples showing real-world usage of the Vars package.

Comprehensive Risk Report

Python
import Vars
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Create realistic financial time series
np.random.seed(42)
n_periods = 1000
dates = pd.date_range('2019-01-01', periods=n_periods, freq='D')

# Simulate returns with volatility clustering (GARCH-like)
volatility = 0.01 * np.ones(n_periods)
returns = np.zeros(n_periods)

for t in range(1, n_periods):
    # Simple GARCH(1,1) volatility
    volatility[t] = 0.05 + 0.85 * volatility[t-1] + 0.1 * returns[t-1]**2
    returns[t] = np.random.randn() * np.sqrt(volatility[t])

returns_series = pd.Series(returns, index=dates)

# Create RiskMetrics instance
risk = Vars.RiskMetrics(returns_series)

# Calculate all risk metrics
results = risk.calculate_all(alpha=0.05, dynamic_var_method='ARCH',
                            split_index=pd.Timestamp('2021-06-01'))

# Generate comprehensive report
report_fig = risk.plot_report(figsize=(15, 20))

# Save report
report_fig.savefig('risk_report.png', dpi=150, bbox_inches='tight')
plt.close()

print("Risk analysis completed. Report saved as 'risk_report.png'")

Backtesting VaR Models

Python
import Vars
import pandas as pd
import numpy as np

# Generate historical data
dates = pd.date_range('2018-01-01', periods=1500, freq='D')
returns = pd.Series(np.random.randn(1500) * 0.015, index=dates)

# Split into training and testing
train = returns[:1000]
test = returns[1000:]

# Calculate VaR on training data
var_ma = Vars.calculate_dynamic_var(train, method='MA', window=100)
var_ewma = Vars.calculate_dynamic_var(train, method='EWMA', lambda_param=0.94)

# Extend VaR forecasts to test period (simplified approach)
# In practice, you would re-estimate models recursively

# Compare exceedence rates
def calculate_exceedence(returns, var_series, alpha=0.05):
    # Simple exceedence calculation
    exceedences = returns <= var_series
    exceedence_rate = exceedences.mean()
    expected_rate = alpha
    return exceedence_rate, expected_rate

# Print results
print("VaR Backtesting Results:")
print("-" * 40)
print(f"MA VaR exceedence rate: {calculate_exceedence(train, var_ma['5%'])[0]:.2%}")
print(f"EWMA VaR exceedence rate: {calculate_exceedence(train, var_ewma['5%'])[0]:.2%}")
print(f"Expected exceedence rate: 5.00%")

Function Definitions

Detailed function signatures and class definitions for the Vars package.

Core Functions

calculate_static_var() function
def calculate_static_var(
    returns: np.ndarray,
    alphas: Union[List[float], float] = [0.01, 0.05],
    method: str = "all",
    verbose: bool = False,
    return_fitted_params: bool = False,
) -> Union[Dict[str, np.ndarray], np.ndarray, Tuple[np.ndarray, Dict]]:
    """Calculate static Value at Risk (VaR) using different methods."""
calculate_dynamic_var() function
def calculate_dynamic_var(
    returns: pd.Series,
    method: str = "EWMA",
    alphas: Union[List[float], float] = [0.01, 0.05],
    align: str = "target",
    **kwargs,
) -> pd.DataFrame:
    """Calculate dynamic Value at Risk using MA, EWMA, or ARCH models."""
calculate_expected_shortfall() function
def calculate_expected_shortfall(
    returns: np.ndarray,
    confidence_levels: Union[List[float], float] = [0.01, 0.05],
    method: str = "all",
    num_simulations: int = 1000000,
    verbose: bool = False,
) -> Union[Dict[str, np.ndarray], np.ndarray, str]:
    """Calculate Expected Shortfall (Conditional Value at Risk)."""
calculate_volatility() function
def calculate_volatility(
    returns: pd.Series,
    method: str = "MA",
    **kwargs
) -> Union[pd.Series, pd.DataFrame]:
    """Calculate volatility using MA, EWMA, or ARCH models."""
plot_var_scatter() function
def plot_var_scatter(
    returns: Union[pd.Series, np.ndarray],
    value_at_risk: Union[pd.DataFrame, pd.Series, np.ndarray, float],
    title: Optional[str] = None,
    figsize: Tuple[int, int] = (12, 6),
    show_statistics: bool = True,
    ax=None,
) -> Tuple[Any, Any]:
    """Plot VaR scatter plot for monitoring VaR exceedences."""
plot_distribution_fit() function
def plot_distribution_fit(
    data: np.ndarray,
    bins: Optional[int] = None,
    figsize: Tuple[int, int] = (10, 6),
    show_statistics: bool = True,
    style_name: str = "seaborn-v0_8-whitegrid",
) -> Any:
    """Plot data distribution histogram with fitted distributions."""
compare_static_var_methods() function
def compare_static_var_methods(
    returns: np.ndarray,
    alphas: List[float] | float = [0.01, 0.05],
    figsize: Tuple[int, int] = (14, 5),
    ax=None,
) -> Any:
    """Compare different static VaR calculation methods."""
RiskMetrics class
class RiskMetrics:
    """Unified interface for risk metrics calculation and reporting."""

    def __init__(self, returns: Union[np.ndarray, pd.Series]):
        """Initialize RiskMetrics with returns data."""

    def calculate_static_var(self, alphas: float = 0.05, method: str = "all"):
        """Calculate static Value at Risk."""

    def calculate_es(self, alphas: float = 0.05, method: str = "all"):
        """Calculate Expected Shortfall."""

    def calculate_dynamic_var(
        self,
        method: str = "EWMA",
        alphas: float = 0.05,
        align: str = "target",
        fullrange=True,
        **kwargs,
    ):
        """Calculate dynamic Value at Risk."""

    def calculate_all(
        self, alphas: float = 0.05, dynamic_var_method: str = "EWMA", **kwargs
    ):
        """Calculate all risk metrics with default settings."""

    def plot_report(self, figsize: Tuple[int, int] = (15, 25), **kwargs):
        """Generate comprehensive risk report visualization."""
demo() function
def demo() -> None:
    """Run comprehensive demonstration of Vars package functionality."""
quick_var() function
def quick_var(
    returns: np.ndarray,
    alphas: float = 0.05
) -> Dict[str, float]:
    """Quick calculation of multiple VaR methods (simplified interface)."""